Higher twist, QCD vacuum structure, and duality in spin structure functions

C. Weiss (JLab), JLab Hall C Workshop 06-Aug-09

- ullet QCD vacuum characterized by non–perturbative short–distance scale $ho \approx 0.2-0.3\,\mathrm{fm} \ll R_{\mathrm{hadron}}$ Size of chiral symmetry breaking gluon fields "Size of constituent quark"
- Governs quark–gluon correlations responsible for higher–twist effects in polarized DIS
 - \rightarrow Estimates of matrix elements f_2, d_2
 - $\rightarrow x$ -dependence of higher twist
 - → Partonic interpretation: Short–range correlations NEW
 - → Duality in spin structure functions

Short-distance scale: "Constituent quarks"

- Success of constituent quarks as effective degrees of freedom
 - \rightarrow Spectroscopy: SU(3) flavor symmetry, etc.
 - → Magnetic moments
 - → High-energy hadron-hadron scattering
- Implies existence of "size" $\rho \ll R$: Two–scale picture of hadron structure!
 - \leftrightarrow Bag model: Single scale R only!

How does scale ρ arise in QCD? How to quantify it?

Short-distance scale: QCD vacuum structure

- Dynamical chiral symmetry breaking by non-perturbative gluon fields
 - Strongly localized: $\rho \ll 1 \, \mathrm{fm}$
 - Condensate of $q \bar{q}$ pairs of size ho
 - Objective measure: Average virtuality $\frac{\langle \bar{\psi} \nabla^2 \psi \rangle}{\langle \bar{\psi} \psi \rangle} > 0.5 \, \text{GeV}^2 \quad \text{(lattice)}$
- Dynamical models: Effective quark mass
 - Cf. Instanton vacuum,
 Schwinger–Dyson equations
 - Gauge–dependent concept!

Higher twist: Polarized DIS

• QCD operator product expansion: Scaling $+1/Q^2$ corrections

$$\int dx \ g_1(x, Q^2) = g_A + \frac{d_2 + f_2}{Q^2}$$

$$\int dx \ x^2 \left[g_2 - g_2^{WW} \right] (x, Q^2) = \frac{d_2}{Q^2}$$

 Moments of nucleon spin structure functions [also: Target mass corr.]

 Matrix elements of local quark–gluon operators

Which scale governs quark-gluon matrix elements?

Higher twist: Short-distance scale

- Twist–4 operator: $\bar{\psi}\widetilde{F}_{\mu\nu}\gamma_{\nu}\psi \xrightarrow{\text{EOM}} \bar{\psi}\gamma_{\mu}\gamma_{5}(-\nabla^{2})\psi$ Virtuality of polarized quarks
 - \rightarrow Sensitive to short–distance scale ρ^{-2}
 - \rightarrow Expect matrix element $f_2 \sim g_A \, \rho^{-2}$
 - ightarrow Large isovector $g_A^{(3)} \gg g_A^{(0)}$
- Twist-3 operator: No relation to short-distance scale!
- Microscopic model: Instanton vacuum

$$f_2^{u-d} \sim -0.5 g_A^{(3)} \rho^{-2} = -0.22 \, \text{GeV}^2$$

$$d_2 \sim O\left(rac{
ho^4}{R^4}
ight)$$
 < 0.01 "parametrically small"

"Hierarchy" of higher-twist matrix elements

[Balla, Polyakov, CW 98]

Higher twist: Experimental results

$$g_1(x,Q^2) = \mathsf{LT} + \mathsf{TMC} + \frac{h(x)}{Q^2}$$

"Empirical" higher twist

x-dependent fit, moments by integration

[Sidorov, CW, 2006]

• Twist-3 from g_2 (non-WW) SLAC E155 2002, JLab Hall A 2004

$$d_2^{p,n} < 10^{-2} \qquad \dots \text{ small!}$$

• Twist–4 from $1/Q^2$ corrections to g_1 incl. Hall A n 2004, COMPASS d 2005

$$f_2^{u-d} = -0.31 \pm 0.11 \,\mathrm{GeV}^2$$

... large isovector!

- Agrees with moment analysis [Deur 2004]
- Isovector renormalization—scheme independent, robust

Polarized moments support role of short–distance scale in HT

What about x-dependence?

Short-distance scale: Partonic interpretation

- Partonic wave function: $q\bar{q}$ pairs with transverse size $\rho \ll R$
 - → Short–range correlations (cf. nuclei)
 - \rightarrow Intrinsic k_T^2 of sea quarks $\sim \rho^{-2}$
- Twist–4 operator (*x*–dep.)

$$f_2 \sim \langle k_T^2
angle_{
m pol}$$
 average k_T^2 of polar, quarks $\sim
ho^{-2}$

- *x*-dependence of twist-4 similar to sea quark distribution
 - \rightarrow Seems to agree with data
 - \rightarrow Higher twist not at large x!

Short-distance scale: Partonic interpretation

Interesting analogy with nuclear physics

Parton density \longleftrightarrow mean field (independent particles)

Higher twist short–range correlations

Implications for semi-inclusive DIS

 k_T (valence quarks) $\ll k_T$ (sea quarks)

 \rightarrow different p_T dependence of fragmentation products [CW, in progress]

ullet Parton-parton correlations in high-energy pp scattering [Tevatron, LHC]

CDF data on double hard scattering consistent with transverse correlations of size $\rho \approx 0.2-0.3\,\mathrm{fm}$

Frankfurt, Strikman, CW Annalen Phys. 13:665, 2004

Short-distance scale: Duality

ullet Resonances: Motion of constituent quarks over distances R

$$E(\text{excitation}) \sim R^{-1}$$

• Dominant higher twist $\sim \rho^{-2}/Q^2$: Short-range correlation, structure of constituent quark

"average" x, not $x \to 1$

- → Dominant higher twist plays no role in duality!
- \rightarrow "Special" higher twist $\sim R^{-2}/Q^2$ at $x \rightarrow 1$ dual to resonance structure

Summary

- ullet Higher twist corrections in DIS dominated by short–distance scale ho related to QCD vacuum structure
- Hierarchy of higher twist matrix elements Twist–4 ≫ Twist–3 confirmed by polarized DIS data
- New interpretation of higher twist: Transverse short–range correlations in nucleon's partonic wave function
 - . . . numerous implications!